

Edvantage Science AP Chemistry 2 **Chapter 7** Traffic Light Study Guide

Section	Page	I can	Red	Amber	Green
7.1	430	Define <i>oxidation-reduction/redox reactions</i> and cite types of reactions that are redox reactions.	0	0	0
	431 - 432	Determine the oxidation number of each atom in a chemical species.	0	0	0
	433 - 434	Define <i>oxidation</i> and <i>reduction</i> and relate each to an atom's change of oxidation number.	0	0	0
	434 - 436	Define <i>oxidizing agent</i> and <i>reducing agent</i> and identify each in a redox reaction.	0	0	0
7.2	441 - 442	Define <i>half-reaction</i> .	0	0	0
	442 - 444	Balance half-reactions both under acidic and basic conditions.	0	0	0
	445 - 446	Balance redox reactions using the half-reaction method.	0	0	0
	447 - 448	Balance disproportionation and comproportionation reactions.	0	0	0
7.3	457 - 460	Use the SRP Table to determine whether a spontaneous redox reaction, such as a single replacement reaction, will occur.	0	0	0
	460	Relate the strength of a reducing agent (e.g. A^{-}) to the strength of its complementary oxidizing agent (e.g. A).	0	0	0
	461	Define <i>oxidation potential</i> and <i>reduction potential</i> and read these off the SRP Table.	0	0	0
	462 - 463	Determine the predominant redox reaction that will occur in a mixture of oxidizing and reducing agents.	0	0	0
	464	Describe a redox titration and use redox titration data to calculate an analyte's concentration.	0	0	0

Edvantage Science AP Chemistry 2 **Chapter 7** Traffic Light Study Guide

Section	Page	I can	Red	Amber	Green
7.4	470 - 472	Draw a <i>standard electrochemical cell</i> , label its parts, and describe its operation.	0	0	0
	472	Describe a non-metal electrode.	0	0	0
	472 - 474	Use the SRP Table to predict <i>standard cell potentials</i> (E°).	0	0	0
	475 - 476	State the effect of altering half-cell concentrations on a given cell's potential.	0	0	0
	475 - 476	Describe and explain what happens to a cell's potential as it operates. State the meaning and voltage of a <i>cell at equilibrium</i> .	0	0	0
	476 - 479	Use the <i>Nernst Equation</i> to determine the potential of a cell with non-standard ion concentrations.	0	0	0
	476 - 479	Use the <i>Nernst Equation</i> to convert a cell's E^{o} into K_{eq} (and vice-versa).	0	0	0
	480 - 482	Describe the basic structure of the alkaline dry cell, the lead-acid storage battery, and the fuel cell. Name the common uses for each.	0	0	0
	482 - 483	Define <i>corrosion</i> . Describe the chemistry of rusting. Cite factors that increase corrosion and describe methods (particularly <i>cathodic protection</i>) for protecting metals from corrosion.	0	0	0
7.5	492 - 493	Draw an <i>electrolytic cell</i> , label its parts, and describe its operation.	0	0	0
	493 - 494	Use the SRP Table to predict the voltage required to operate an electrolytic cell.	0	0	0
	495	Contrast the electrolytic cell with the electrochemical cell.	0	0	0
	496 - 498	Describe the difference between a <i>type 1</i> , a <i>type 2</i> , and a <i>type 3</i> , electrolytic cell.	0	0	0
	496 - 498	Use the SRP Table to determine the oxidation half-reaction and the reduction half-reaction that will occur in any given electrolytic cell.	0	0	0
	500 - 501	Describe the following applications of electrolysis: i. <i>electrowinning</i> , <i>electroplating</i> , and <i>electrorefining</i> ii. the <i>Héroult-Hall process</i> for producing aluminum iii. the <i>chloralkali industry</i> iv. <i>impressed current cathodic protection</i>	0	0	0

Edvantage Science AP Chemistry 2 **Chapter 7** Traffic Light Study Guide

Section	Page	I can	Red	Amber	Green
7.6	505 - 506	 In an electrochemical or electrolytic cell, given <i>Faraday's constant</i> (<i>F</i>) and any two of the following, calculate the third. i. the amount of a chemical produced at an electrode ii. the amperage iii. the time the circuit was running. 	0	0	0
	507 - 508	Calculate the Standard Free Energy Change (ΔG°) accompanying an electrochemical reaction.	0	0	0
	509 - 510	Interconvert the Standard Free Energy Change (ΔG°), the Standard Cell Potential (E°), and the Equilibrium Constant (K) for an electrochemical reaction and relate each to the reaction's spontaneity.	0	0	0